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Abstract 

Natural gas is a fossil fuel accounting for about 30% of US primary energy consumption. 

Climate change is one of the primary environmental issues associated with natural gas use: 

natural gas combustion releases carbon dioxide. A less emphasized issue is that natural gas is 

mostly methane, a potent greenhouse gas (GHG). The climate impact of natural gas use is thus 

sensitive to the amount of methane that escapes from the natural gas system unburned. We call 

attention to three considerations for modeling natural gas-related methane emissions in life cycle 

assessment (LCA). First, natural gas system methane leakage is inconsistently characterized and 

likely systematically underestimated by commonly used life cycle inventory (LCI) databases. 

Second, studies are often imprecise in assumptions about process boundaries. This matters 

because not all natural gas uses rely on the same infrastructure and induce the same methane 

leakage. Third, there is not yet a stable estimate for the global warming potential (GWP) of 

methane. Newer estimates tend to be larger, which further exacerbates the underestimation of 

GHG impacts from natural gas systems. Data uncertainty is common in LCA, but natural gas-

related methane emissions deserve special attention due to their influence on a decision-relevant 

parameter (GHG intensity) in product systems across the economy. 
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Highlights:  

 Methane emissions from natural gas systems are widely relevant to carbon footprints 

 Inventory databases for life cycle assessment underestimate methane emissions 

 Inventory database estimates of natural gas methane emissions are inconsistent 

 Not all natural gas uses invoke the same supply chains and leakage patterns 

 The global warming potential of methane is uncertain and may rise further 

 

1 Introduction 
Natural gas accounts for about 30% of US primary energy consumption (EIA, 2018) and is 

widely used for electricity generation, heating, and industrial purposes. Given its prevalence, 

natural gas is part of the life cycle of a large number of product systems. Natural gas is primarily 

comprised of methane (CH4), the second most significant GHG for anthropogenic climate 

change, after carbon dioxide (CO2) (Weyant et al., 2006). Methane has a relatively high global 

warming potential (GWP): even a small amount of emitted methane can result in substantial 

carbon dioxide-equivalent (CO2e) GHG emissions, one of the most commonly studied 

environmental indicators (Grubert, 2017). Questions about the amount of methane that escapes to 

the atmosphere unburned from natural gas systems, which we will call methane leakage, are thus 

highly relevant to environmental impact evaluations like life cycle assessment (LCA). 
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Despite recent studies on methane leakage from natural gas systems, most of which suggest that 

leakage is underestimated (Alvarez et al., 2018; Balcombe et al., 2018; Brandt et al., 2014; 

Farquharson et al., 2017; Heath et al., 2014; Littlefield et al., 2016; Sanchez and Mays, 2015; 

Zhang et al., 2014), little attention has been paid to the impact of methane leakage inventories on 

product carbon footprints. Natural gas is an indirect input to many products via electricity, 

heating, and chemical feedstock supply. As these inputs are typically background processes for 

product-specific LCAs, database defaults are often used. This ubiquity means that inaccurate 

methane leakage inventories are widely relevant to LCA and, especially given the small number 

of processes involved, should be priorities for LCA database improvement. 

 

1.1 Methane leakage from natural gas systems 
We will use the terms methane “leakage” or methane “emissions” interchangeably to refer to all 

methane emitted unburned from natural gas systems. Not all leakage is unintentional: for 

example, some safety systems are designed to release gas when a system becomes overpressured 

due to unusual operating conditions or equipment problems. Leakage is generally a combination 

of non-purposeful emissions (sometimes called fugitives) and designed or purposeful emissions 

(sometimes called vents).  

 

Researchers have been concerned for decades about methane leakage from natural gas systems 

and its influence on climate change (Lelieveld et al., 2005, 1993; Meier et al., 2005), with 

substantial disagreement about the value and dynamics of leakage rates (Kirchgessner et al., 

1997). Data from outside North America are sparse (though see Yacovitch et al., 2018, a recent 

study from the Netherlands), neglecting possibly significant regional variability (Bouman et al., 

2015; Gibon et al., 2017). For example, a study comparing GHG emissions from coal versus 

shale gas-fired power generation in China uses United States (US) emissions factors due to a 

lack of Chinese data (Chang et al., 2015). Recent literature has suggested that methane emissions 

might be systematically underestimated by official inventories, in part because a substantial 

portion of emissions is due to large, infrequent, and unintentional releases that can be difficult to 

detect (Brandt et al., 2016, 2014). The exact volume of leakage is not precisely understood 

(Alvarez et al., 2012; Brandt et al., 2014; Burnham et al., 2012; Hausfather, 2015, 2014; Heath et 

al., 2014; Jeong et al., 2014; Lelieveld et al., 2005, 1993) due to regional variability (Allen et al., 

2013; Jiang et al., 2011; Karion et al., 2015, 2013; Pétron et al., 2014), operational practices, 

regulatory context, and other factors. 

 

The energy analysis community has primarily focused on leakage while examining whether 

substituting natural gas for coal in the electricity sector will reduce overall climate change 

impacts (Farquharson et al., 2017; Gilbert and Sovacool, 2017; Hausfather, 2015; Howarth et al., 

2011; Roy et al., 2015). Less attention has been paid to the relative GHG impacts of natural gas- 

versus electricity-based residential and commercial applications like heating and cooking. 

Although leakage from the natural gas distribution system has been studied (Costello, 2014; 

Hendrick et al., 2016; Jackson et al., 2014; McKain et al., 2015; Phillips et al., 2013), end use 

leakage from equipment, homes and businesses is rarely assessed (for an exception see Lavoie et 

al., 2017). This lack of study is particularly apparent for residential applications where methane 

leakage from appliances might be environmentally relevant in a comparison across heating 

options (Oliphant, 1994).  
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1.2 Three claims about methane leakage in LCA databases 
In this paper we make three claims with respect to the treatment of methane in LCA databases. 

 

First, commonly used inventory databases are inconsistent and likely systematically 

underestimate methane leakage from the natural gas system. Major ambiguities within and across 

inventory databases are common. We examine how existing databases model methane leakage 

from the natural gas system and quantify the relevance of natural gas system leakage rates to the 

GHG footprint of basic materials to demonstrate the scope of this problem. Our results show that 

methane leakage from natural gas systems should be a priority target for inventory 

improvements. 

 

Second, databases (and individual studies) have unclear or incorrect assumptions about which 

natural gas system processes are applicable for a given supply chain. This is important, as it 

affects both how users might respond to leakage and what methane emissions are assigned to a 

given use of natural gas.  

 

Third, there is not yet a stable estimate for the GWP of methane, affecting comparability of LCA 

studies over time. Newer estimates of methane’s GWP tend to be larger. Analysts studying 

comparative energy systems should perform sensitivity analysis on the GWP and should report 

actual methane masses rather than CO2e only, to allow forward compatibility and comparability 

of results.  

 

The analysis below examines and supports these claims in order. We will focus on US methane 

leakage in LCA databases, though many of the same issues apply to carbon footprinting or 

environmental impact assessment studies. 

 

2 Methods 

2.1 Methane leakage in Life Cycle Inventory databases 

Given the vast amount of data needed for LCA and a desire for consistency across studies, LCA 

practitioners often use one of a few common life cycle inventory (LCI) databases. For major 

databases, we ask: 1) What do the databases assume about US natural gas system leakage rates? 

And 2), how significant is embodied natural gas-related methane leakage for GHG footprints of 

non-natural gas product systems? 

 

2.1.1 Database assumptions  
We examine leakage assumptions in several common LCI databases. Our primary goal is to 

illustrate current status and discrepancies rather than to provide a set of recommended values. 

We do, however, incorporate synthetic insights from the many recent studies that have estimated 

leakage outside the context of life cycle inventories (Abrahams et al., 2015; Allen et al., 2014, 

2013; Alvarez et al., 2018; Balcombe et al., 2018; Brandt et al., 2014; Ge et al., 2016; Heath et 

al., 2014; Hendrick et al., 2016; Jeong et al., 2014; Jiang et al., 2011; Karion et al., 2015, 2013; 

Lavoie et al., 2017; Littlefield et al., 2016; Mitchell et al., 2015; Pétron et al., 2014; Phillips et 

al., 2013; Zimmerle et al., 2015). 

 

We examine three databases, each of which is the most current version available: 
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1) Economic Input-Output Life Cycle Assessment (EIO-LCA) Model (Carnegie Mellon 

University Green Design Institute, 2008), 2002 Producer Price model; 

2) The National Renewable Energy Laboratory (NREL) United States Life Cycle Inventory 

database (USLCI) (NREL, 2012); and 

3) The ecoinvent database, version 3.5 (ecoinvent, 2018).  

 

USLCI and EIO-LCA data are older and less frequently updated than ecoinvent data, but 

relevantly, these databases are free while ecoinvent is not. Thus, it is reasonable to expect that 

they remain in use. Some other common LCA tools base their US natural gas-related methane 

emissions on databases we assess, so these are implicitly assessed as well. For example, GREET 

uses EPA inventories and GaBi/Thinkstep uses the USLCI as source data. 

 

In each case, we: 1) identify unit process data for US-based natural gas systems; 2) match 

available inventory processes with processes in the US natural gas system to evaluate coverage; 

3) convert data from each database’s inventory format to a mass of methane basis, using process-

specific data on energy densities, pressure, and standard gas conditions; and 4) calculate methane 

emissions as a mass percentage of gross methane withdrawals for each included process.  

 

To investigate the accuracy of LCI data, we compare them with three non-LCI leakage estimates: 

1) a recent inventory for 2015 natural gas supply chain methane emissions based on facility-scale 

ground measurements and aircraft observations (Alvarez et al., 2018); 2) Environmental 

Protection Agency (EPA) greenhouse gas inventory (GHGI) estimates for 2013 (EPA, 2015); 

and 3) EPA GHGI estimates for 2015 (EPA, 2017). EPA GHGI mass emissions are converted to 

leakage rates using the method of Brandt et al. (2014). Year 2015 EPA GHGI results are the 

basis for many leakage parameters in Argonne National Laboratory’s GREET model (Burnham, 

2017), and these data reflect a recent change in calculation methodology for natural gas systems. 

EPA 2013 GHG data are also included because they are of a similar vintage to the USLCI 

(released in 2012) dataset.  

 

2.1.2 Significance beyond natural gas systems  
We are interested in LCI data on methane leakage from the natural gas system largely because of 

the hypothesis that these background data have a large influence on GHG footprint results 

beyond the natural gas system itself. To test this hypothesis, we investigate the contribution of 

natural gas system methane leakage to the GHG footprints of six illustrative materials: plastic, 

fertilizer, aluminum, steel, electricity, and cement. These materials were chosen because they are 

themselves common inputs for products throughout the economy. Demonstrating that natural gas 

system methane leakage matters for the GHG footprints of these materials thus indicates its 

relevance for GHG footprinting more generally. 

 

2.2 The location of methane leakage 

Not all processes that are part of the natural gas supply chain apply to all uses of natural gas. For 

example, leakage from the natural gas distribution system (a low-pressure network delivering 

natural gas to typically nonindustrial end users, like homes) does not in most cases affect the 

carbon intensity of natural gas-fired electricity from power plants. Most natural gas-fired power 

plants are supplied from the high-pressure transmission system either directly or via high 

pressure laterals (personal communication, Dynegy Investor Relations, March 2018). We 
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illustrate the relevance of this system structure using natural gas consumption data from the 

Energy Information Administration (EIA) to provide guidelines on how natural gas end uses map 

to natural gas system subprocesses (EIA, 2017). 

 

2.3 The influence of global warming potential on methane leakage impact 

Use of different GWPs in the literature means that methane emissions reported on a CO2e basis, 

even evaluated over the same time horizon, are not necessarily comparable. To illustrate the 

impact of this instability, we examine methane’s GWP in the five Intergovernmental Panel on 

Climate Change (IPCC) Assessment Reports (the First, Second, Third, Fourth, and Fifth are 

referred to as FAR, SAR, TAR, AR4, and AR5) (Intergovernmental Panel on Climate Change, 

2018). We do not address the separate question of which time horizon to use when comparing 

climate impacts of methane to carbon dioxide (Farquharson et al., 2017; Gilbert and Sovacool, 

2017; Hausfather, 2015; Howarth et al., 2011; Roy et al., 2015).  

 

3 Results and Discussion 

3.1 Methane leakage in Life Cycle Inventories 

3.1.1 Database assumptions 

Table 1 summarizes the leakage assumptions in studied LCI databases. The supplementary 

material (SM) contains calculation details.  

 

For each life cycle stage, leakage is reported as a cumulative mass percentage of gross 

withdrawals of the methane that reaches each stage. That is, a value of 1.4% under “distribution” 

means that for natural gas in the distribution system, life cycle methane emissions to that point 

are 1.4% of the mass of the gross withdrawals of methane that reached the distribution system, 

not that 1.4% of methane is lost at the distribution stage or that 1.4% of gross methane 

withdrawals have been lost due to distribution and upstream processes. Percent emissions are 

computed as follows (Equation 1): 

 

percent emissions through stage 𝑛 =  ∑
mass methane emitted at stage 𝑖

mass methane reaching stage 𝑖×
mass methane withdrawn (incl. losses)

unit mass methane reaching stage 𝑖

𝑛
𝑖=1   (Equation 1). 

 

Leakage rate estimates for a stage can be computed by subtracting the cumulative losses listed 

for upstream processes. Note also that gross withdrawals of methane are not equal to gross 

withdrawals of natural gas because natural gas is not pure methane. Relatedly, the embodied 

noncombustion GHG intensity of natural gas is also affected by the presence of other GHGs in 

withdrawn natural gas, including CO2 and ethane. These nonmethane contributions are outside 

the scope of this study but could be relevant for some systems, particularly those using natural 

gas sources containing large mole fractions of CO2.  
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Table 1. Methane leakage as cumulative mass percentage of gross withdrawals of methane 

reaching a given stage, assuming natural gas progresses through each stage in sequence 
Data source Production Processing Transmission & Storage Distribution End Use 

Reference estimates      

Alvarez et al. 2018 2.0% 2.1% 2.4% 2.5%1 n/a2 

EPA 2015 0.82% 0.93% 1.1% 1.3% n/a 

EPA 2013 0.38% 0.63% 1.0% 1.4% n/a 

      

LCA databases      

EIO-LCA3 0.57%  n/a 0.91% 1.4% n/a 

USLCI 0.34%4 0.54% 0.92% n/a n/a 

ecoinvent v3.5 1.3%5 n/a 1.6% n/a n/a 
1 Note Alvarez et al. 2018 estimates for distribution leakage are based on the 2017 EPA GHGI, which they consider a lower bound 
for the true value (see Alvarez et al. 2018, S1.5). 
2 “n/a” denotes a process that is not explicitly included and where no data are available. 
3 Methane leakage from the natural gas system is based on the furthest downstream sector “Natural gas distribution:” see SM, S1.2 
for details. 
4 The 0.34% value cited is based on the process “natural gas, extracted,” which documentation suggests includes all natural gas 
production. The process “natural gas, at extraction site” is associated with 1.4% leakage. The distinction between the two is unclear: 
documentation indicates that the database distinguishes between associated and nonassociated natural gas, but both “natural gas, 
at extraction site” and “natural gas, extracted” indicate in their “technology description” that the process includes both natural gas 
from natural gas-only wells (nonassociated) and from oil wells (associated). See SM, S1.3 for details. 
5 Based on life cycle inventory data. Note that the production value is based on the mass-weighted percentage of contributions from 
“natural gas production” (methane leakage: 1.8%; ecoinvent contribution: 70%) and the natural gas allocation of “petroleum and gas 
production, on-shore” (methane leakage: 0.1%; ecoinvent contribution, 30%). See SM, S1.4 for details. 

 

Table 1 indicates several issues with the LCI databases. First, all investigated databases likely 

underestimate methane emissions from natural gas systems: total leakage reported by each 

database is similar to EPA estimates, which evidence suggests are too low (e.g., Alvarez et al., 

2018). Also, they disagree. For example, data from ecoinvent (dated 2018) are much different 

from USLCI data, even though documentation for ecoinvent suggests its values are based on the 

USLCI. USLCI and EIO-LCA data are both based on US federal data from the late 1990s and 

early 2000s, but leakage rates by process are meaningfully different.  

 

Second, databases have variable coverage of the natural gas system. This matters in part because 

LCA is sometimes used for hotspot identification, allowing analysts to focus on life cycle stages 

with the most potential for improvement. For example, even though the EIO-LCA production 

leakage of 0.57% is not that different from the USLCI production + processing leakage of 

0.54%, users would draw very different conclusions about where to focus leakage reduction 

efforts. Note that none of the investigated databases account for methane leakage associated with 

nonindustrial end users (for example, residential cooking and heating), though its existence has 

long been understood (Oliphant, 1994) and can affect the climate implications of appliance 

choices. 

 

Third, databases include numerous documentation discrepancies and nonintuitive definitions. 

Minor changes in interpretation or approach result in very different values for Table 1. For 

example, although ecoinvent 3.5 shows a leakage rate slightly higher than EPA estimates, this 

value is highly sensitive to a nonobvious parameter related to natural gas production from gas 

versus oil wells: through ecoinvent 3.3, use of a different value for that parameter, but essentially 

identical data otherwise, led to implied leakage of 1.2% rather than 1.6%. Even in version 3.5, 

the parameter does not reflect actual US conditions (see SM, S1.4). In another example, in EIO-

LCA, calculating emissions based on the “Pipeline transportation” process suggests 

transmission-stage leakage of 0.42% (when emissions are allocated to coproducts based on 

monetary value) to 1.6% (when emissions are allocated to coproducts based on the 2002 EPA 
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Greenhouse Gas Inventory), not the 0.34% implied by decomposing the “Natural gas 

distribution” sector (see SM, S1.2).  

 

In USLCI and ecoinvent, ambiguous process names and definitions can easily lead to unintended 

choices with large implications for results. In both cases, there are multiple processes for natural 

gas extraction with unclear or no guidance on which to use. In USLCI, natural gas produced 

from gas-only wells versus from any well appear to be differentiated by the terms “extracted” 

(0.34% leakage) and “at extraction site” (1.4% leakage), respectively. Process descriptions are 

nearly identical, and both imply that that all natural gas (both associated and nonassociated) is 

included. Further, “natural gas, extracted” uses a mass-denominated output while “natural gas, at 

extraction site” uses a volume-denominated output, so users might choose one or the other based 

on the units they are using without realizing the data are different. This introduces unnecessary 

possible confusion. 

 

A similar issue exists for ecoinvent users, who might notice that the cumulative value for leakage 

post-transmission is smaller than leakage associated with “natural gas, production,” even though 

the reference flow for the two is the same: 1 m3 of “natural gas, high pressure.” This discrepancy 

exists because the post-transmission process is also drawing on a second production process, 

“petroleum and gas production, on-shore” (see SM, S1.4). The use of the term “natural gas, high 

pressure” to refer to different systems at different places in the inventory is confusing. As with 

USLCI, users likely will not anticipate that data associated with “natural gas, production” are 

very different from those associated with the natural gas output of “petroleum and gas 

production, on-shore:” life cycle methane leakage for these processes is 1.8% or 0.10%, 

respectively. Less ambiguous names would help (e.g., calling one flow “natural gas, high 

pressure, at oil and gas co-production facility” and the other “natural gas, high pressure, at gas 

production facility”).  

 

Another serious source of confusion is use of the term “natural gas” itself. Without data on the 

composition of natural gas, converting among mass, energy, and volume units can introduce 

serious errors. Further, users might reasonably assume that the type of “natural gas” being 

referenced is relevant to the process at hand, which is not always the case. For example, in 

ecoinvent 3.5, the stated mass density of “natural gas, high pressure” of 0.84 kg / m3 implies that 

the reference flow is raw gas at standard temperature and pressure, not pipeline-quality gas at 

high pressure (see SM, S1.4). USLCI uses energy rather than mass densities to describe flows 

but has similar problems (see SM, S1.3). Additionally, databases rarely document whether 

energy densities are reported on a higher heating value (HHV, sometimes called “gross”) or 

lower heating value (LHV, sometimes called “net”) basis. The difference between these two 

measures is about 10%, and the impact might not be noticed outside the energy community (e.g., 

one should not expect that a polymer chemist performing an LCA of a novel plastics process 

would know to check for this definitional detail).  

 

3.1.2 Significance beyond natural gas systems  
Problems with the characterization of methane leakage from natural gas systems are important 

for GHG footprinting beyond studies focused on natural gas itself. To illustrate this point, we use 

the EIO-LCA, USLCI, and ecoinvent databases to estimate natural gas system methane leakage 

GHG emissions as a percentage of direct process GHG emissions for six major industrial 
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materials: plastic, fertilizer, aluminum, steel, electricity, and cement (Figure 1). Calculation 

details, including the exact processes referenced, can be found in the SM Data File. Figure 1 uses 

a GWP of 34 for methane (AR5, 100 year, with climate carbon feedback) and also presents 

“adjusted” values that show what results would be using leakage rates from a recent empirical 

study of US natural gas system leakage (Alvarez et al., 2018).  

 

Figure 1. Contribution of natural gas system methane leakage to greenhouse gas intensity for six 

basic materials in three life cycle inventory databases 
 

 
Notes: Specific processes used to proxy the six materials are found in the SM Data File. “Plastic” is “Plastics material and resin 
manufacturing” for EIO-LCA and polyethylene terephthalate (PET) for USLCI and ecoinvent. “Fertilizer” is “Fertilizer manufacturing” 
for EIO-LCA, “nitrogen fertilizer” for USLCI, and “urea ammonium nitrate” for ecoinvent. “Electricity” is the broadest category 
identified for US electricity in each case. “Adjusted” values show recalculated values assuming that leakage rates in each database 
matched values from Alvarez et al., 2018.  

 

For some materials, embodied methane emissions from natural gas systems are not large 

compared to direct emissions. For example, cement manufacturing releases substantial process 

CO2 emissions and uses little natural gas, so the influence of leaking methane is negligible. For 

others, however, most notably plastic, embodied methane leakage is substantial.  

 

Figure 1 suggests that correctly representing natural gas-system methane leakage should be a 

priority for LCI databases. Only a small number of processes need be updated, a minor task 

relative to the potential benefits to accuracy. Ensuring these emissions are visible in LCA studies 

can also help make results actionable. Reducing methane leakage from natural gas systems is 

likely an easier mitigation opportunity (Gallagher et al., 2015; Gladd, 2016; Hopkins et al., 2016; 

Lamb et al., 2015; Ravikumar and Brandt, 2017; von Fischer et al., 2017) than reducing 
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byproduct emissions inherent to the production of a product (e.g., from calcining or combustion) 

or unintentional emissions in more dispersed settings (e.g., methane emissions from abandoned 

coal mines or nitrous oxide emissions from fertilized soils). 

 

3.2 The location of methane leakage 

Natural gas has unusually diverse consuming sectors: in the US, 40% is used for electricity 

generation and 30% each for industrial and residential/commercial uses (EIA, 2017). For LCA, 

this matters not only because it means that natural gas system methane leakage has pervasive 

GHG footprint implications (see Section 3.1.2), but also because not all parts of the natural gas 

supply system are used to serve all end users. Correct representations of a product system include 

methane leakage only from those upstream processes that are invoked by the product system. 

Studies of methane leakage often do not explicitly clarify which processes are appropriate for 

which types of end use, so this section provides rules of thumb for modeling the natural gas 

system.  

 

Some processes are common to essentially all uses of natural gas. These include extraction, 

processing, and transmission through high pressure pipelines. Emissions from these processes 

can vary (e.g., by basin of origin, processing plant, or pipeline), but all natural gas users 

connected to the same infrastructure will induce the same upstream impacts.  

 

Other processes are not common to all uses. The most significant divergence is that some end 

uses are served by low-pressure distribution systems downstream of high-pressure transmission 

systems, while others draw on the high-pressure system directly. Although both the transmission 

and distribution systems are sometimes called “pipelines” or “transportation,” they are separate 

systems. Thus, distribution leakage should not be allocated to users supplied directly by the 

transmission system. A rule of thumb is that natural gas used for power plants, industrial heat, 

and chemical plant feedstocks generally does not pass through the distribution system, while 

natural gas used for commercial and residential purposes generally does (Figure 2, and see SM, 

S2). The most decision-relevant application of this observation is for natural gas-fired power 

plants, which are rarely fed by distribution lines, and which have frequently been compared to 

coal-fired power on the basis of relative carbon emissions. Given methane’s high GWP, 

incorrectly including distribution leakage for natural gas-fired power can lead to nonneglible 

overestimates of GHG intensity (Alvarez et al., 2012). 
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Figure 2. Relationship between end uses of natural gas in the United States and upstream 

processes for which leakage and other impacts are embedded  

 
   Life Cycle Stages Relevant to End Use 

End Use Description1 
2016 

Consump
-tion, Bcf 

Produc-
tion 

Process-
ing 

Trans-
mission 

Storage 
Distri-
bution 

User 
leakage2 

Lease fuel natural gas used 
for production 

1,169 yes      

Plant fuel natural gas used 
for processing 

421 yes yes     

Pipeline and 
distribution 
use3 

natural gas used 
for transmission 
and distribution 
pipelines 

697 yes yes some some some  

Transmission not reported 
separately 

n/a yes yes some some   

Distribution not reported 
separately 

n/a yes yes yes yes some  

Residential natural gas used 
in residences 

4,345 yes yes yes yes yes yes 

Commercial natural gas used 
in commercial 
settings 

3,105 yes yes yes yes yes yes 

Industrial natural gas used 
in non-power 
generation 
industrial settings 

7,722 yes yes yes yes rare yes 

Vehicle Fuel natural gas used 
in vehicles 

41 yes yes yes yes yes yes 

Electric Power natural gas used 
for electricity 
generation 

9,983 yes yes yes yes rare yes 

Approximate 
end use 
volume 
affected, %4 

 

27,486 ~100% ~96% <90% <90% <23% ~87% 

Notes: Bcf = billion cubic feet. Green/yes = “upstream process for this end use,” yellow/some = “upstream process for some of this 
end use,” where “some” means that neither condition is unusual, red = “not an upstream process for this end use,” where “rare” 
means that analysts should assume the upstream process does not apply unless they specifically know about an unusual situation. 
Source: https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.htm.  
1Formal definitions at https://www.eia.gov/dnav/ng/TblDefs/ng_cons_sum_tbldef2.asp. 
2All users have the potential to emit fugitive (leaked) methane. These emissions vary widely by customer type and by specific 
customer: averages should be used very carefully, with effort to match the leakage rate to the end use type. Natural gas system fuel 
use (i.e., lease, plant, and pipeline and distribution consumption) is assumed not to have additional end-use leakage not accounted 
for as a system leakage. 
3Pipeline use is not differentiated between the transmission and distribution system. Given common uses of natural gas for 
compressor stations along the pipeline route, natural gas used for these purposes will be subject to some leakage from the systems 
they support (i.e., transmission or distribution) as well as upstream emissions. 
4Approximate; exact relationships between users and the natural gas system are not clearly known. For example, some industrial 
users might be located on distribution lines. 

 

We recommend that authors explicitly state which natural gas system processes are included in 

analysis, rather than citing an overall leakage rate. For high resolution studies, note that actual 

(rather than system-average) leakage can be highly site specific given different use of 

technologies, levels of training, safety and operational practices, year and/or season, legal 

context, company practice, or geology and land characteristics. Customer-side leakage is not 

well characterized by the empirical literature.  
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3.3 The influence of global warming potential on methane leakage impact 

The scientific community’s estimate of methane’s GWP has not yet stabilized. Notably, 

published estimates have tended to increase over time, both for 20- and 100-year estimates 

(Figure 3). For methane, IPCC-estimated GWP values that include climate-carbon feedback are 

slightly higher than GWP values that do not include this feedback, which is intended to account 

for inconsistent estimates of GWP for the reference gas (CO2) versus other species (Gasser et al., 

2017). The current IPCC estimate for methane’s 100-year GWP (with climate-carbon feedback) 

is about 60% higher than the 1996 estimate and about 35% higher than the 2007 estimate; for the 

20-year GWP, the current estimate is about 50% higher than the 1996 estimate and 20% higher 

than the 2007 estimate. The anticipated release of the Sixth Assessment Report in 2022—nearly 

ten years after the release of the current Fifth Assessment Report (AR5)—might update GWP 

estimates again.  

 

Figure 3. Estimated global warming potential of methane by IPCC assessment report 

Data source: Intergovernmental Panel on Climate Change, 2018 

 

How much does GWP matter? Using a GWP of 25 (100-year, AR4), the 2015 GHGI estimates 

that natural gas systems accounted for 2.8% of total US GHG emissions (EPA, 2017). Simply 

updating the GWP to 34 (100-year, AR5 with climate-carbon feedback) raises this estimate to 

3.6% of total US GHG emissions. Updating both GWP and natural gas system leakage rates to 

reflect state of the science estimates (Alvarez et al. 2018) suggests that methane leakage from 

natural gas systems alone accounts for 7.1% of total US GHG emissions—2.5 times the recorded 

estimate (EPA, 2017). Researchers using CO2e-based literature estimates for methane impacts 

should take care to identify and harmonize GWP assumptions from previously published work. 

Especially for studies that directly address natural gas systems, conducting GWP sensitivity 

analysis is advisable.  
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4 Conclusion 
The impact of methane leakage from natural gas systems is systematically underestimated and 

imprecisely characterized, which affects GHG footprints across product systems. Underestimated 

natural gas system methane leakage and low GWPs are both significant. LCA databases often 

underestimate leakage through key life cycle stages even relative to recorded estimates, and the 

connection between database estimates and relevant data is frequently unclear. The small number 

of processes involved, and the large impact to product LCA uncertainty, makes natural gas 

system methane leakage a priority target for data quality assurance in inventory databases. 

Meaningful improvements can be made with attention to the issues of leakage rates, system 

boundaries, and GWP described in this work. 
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